Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(17): 24768-24787, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38523214

RESUMO

An alternative method to conventional synthesis is examined in this review by the use of plant extracts as reducing and capping agents. The use of plant extracts represents an economically viable and environmentally friendly alternative to conventional synthesis. In contrast to previous reviews, this review focuses on the synthesis of nano-compounds utilizing plant extracts, which lack comprehensive reports. In order to synthesize diverse nanostructures, researchers have discovered a sustainable and cost-effective method of harnessing functional groups in plant extracts. Each plant extract is discussed in detail, along with its potential applications, demonstrating the remarkable morphological diversity achieved by using these green synthesis approaches. A reduction and capping agent made from plant extracts is aligned with the principles of green chemistry and offers economic advantages as well as paving the way for industrial applications. In this review, it is discussed the significance of using plant extracts to synthesize nano-compounds, emphasizing their potential to shape the future of nanomaterials in a sustainable and ecologically friendly manner.


Assuntos
Nanopartículas Metálicas , Nanoestruturas , Nanopartículas Metálicas/química , Extratos Vegetais/química , Química Verde , Nanoestruturas/química , Plantas/química , Antibacterianos
2.
Environ Sci Pollut Res Int ; 31(14): 21370-21379, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38388980

RESUMO

In this article, we present the synthesis of binary CdAl4O7/CdO nanocomposites using green tea extracts and green chemistry methods for high-performance hydrogen storage. The green tea extract contains bioactive compounds (polyphenols) that act as reducing agents, which facilitate the reaction between metal ions and water. By examining the structural and morphological characteristics of the obtained substrates using scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), and Fourier transform infrared spectroscopy (FT-IR), it was demonstrated that the nanocomposites were successfully synthesized. We evaluated the electrochemical performance of the synthesized CdAl4O7/CdO nanocomposites using a three-electrode chronopotentiometry system. According to the results, the synthesized nanocomposites are capable of storing 1750 mAh/g of hydrogen at a constant current of 1 Amp. By using green tea extract as a natural structure-directing agent, the CdAl4O7/CdO nanocomposite can be developed more sustainably as high-performance hydrogen storage materials. Ultimately, this work contributes to the advancement of sustainable energy storage through the synthesis of a promising new material.


Assuntos
Hidrogênio , Nanocompostos , Espectroscopia de Infravermelho com Transformada de Fourier , Nanocompostos/química , Difração de Raios X , Chá/química
3.
Ecotoxicol Environ Saf ; 269: 115801, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38064791

RESUMO

In the present day, the widespread presence of lingering contaminants in ecosystems has prompted scientists to develop novel semiconductor nanoarchitectures that assist in photocatalytic reactions mediated by visible light. As a result, we propose to prepare a series of Dy-Mn-O based nano-catalysts using a sonochemical approach utilizing various ionic phases of surfactants as structure-directing agents. In this study, X-ray diffraction (XRD) and Rietveld refinement techniques were used to explore the fundamental effects of surfactants on the compositional-structural features of the materials. In terms of morphological profiles, DyMnO3/Dy2O3 (DM) nanostructures fabricated with Triton X-80 as a structure-directing agent showed the best uniformity with an acceptable size range between 14.14 and 52.35 nm. In the visible-light-driven photocatalytic domain, these nanocomposites provide high responsiveness based on their optical band gap value of 2.0 eV. According to our findings, two individual factors affect dye activity, namely dye type and concentration, which is why a high decomposition efficiency of 78.8% was obtained for 10 ppm Acid violet (AV) using DyMnO3/Dy2O3 nanocomposites after 120 min of exposure to visible light. Furthermore, radical quenching test confirmation confirmed the mechanistic behind the degradation process. This indicates that active species of O2•- and •OH may play a significant role in photocatalysis. As a result of repeated processes over three consecutive cycles, binary DyMnO3/Dy2O3 nanocomposites had an efficiency of 64.4% in removing dyes from the environment, indicating their high stability.


Assuntos
Ecossistema , Nanocompostos , Luz , Nanocompostos/química , Tensoativos , Catálise
4.
Int J Biol Macromol ; 253(Pt 8): 127583, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37866577

RESUMO

Modification surface of chitosan nanoparticles using ZnO nanoparticles is important interest in drug delivery because of the beneficial properties. In this study, we proposed a chitosan/ZnO nanocomposite for the targeted delivery of antibacterial peptide (LL37). Synthesized LL37-loaded chitosan/ZnO nanocomposite (CS/ZnO/LL37-NCs) was based on the ionotropic gelation method. The antibacterial activity of the synthesized platform versus Methicillin-resistant Staphylococcus aureus (MRSA) was determined by the microdilution method in 10 mM sodium phosphate buffer. The biofilm formation inhibitory was also evaluated using microtiter plate method. In addition, the ability of CS/ZnO/LL37-NCs on the icaA gene expression level was assessed by the Real-Time PCR. The loading and release investigations confirmed the suitability of CS/ZnO-NCs for LL37 encapsulation. Results showed 6 log10 CFU/ml reduction in MRSA treated with the CS/ZnO/LL37-NPs. Moreover, CS/ZnO/LL37-NCs showed 81 % biofilm formation inhibition than LL37 alone. Also, icaA gene expression decreased 1-fold in the face of CS/ZnO/LL37-NCs. In conclusion, the modification surface of chitosan nanoparticles with ZnO nanoparticles is a suitable chemical platform for the delivery of LL37 that could be used as a promising nanocarrier for enhancing the delivery of antibacterial peptide and improving the antibacterial activity of LL37.


Assuntos
Quitosana , Staphylococcus aureus Resistente à Meticilina , Nanocompostos , Óxido de Zinco , Quitosana/química , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Antibacterianos/farmacologia , Antibacterianos/química , Nanocompostos/química , Biofilmes , Peptídeos/farmacologia , Testes de Sensibilidade Microbiana
5.
Ecotoxicol Environ Saf ; 266: 115578, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37856984

RESUMO

In this study, a green approach was used to synthesize SmMnO3 magnetic nanoparticles via the auto combustion method, where pomegranate juice was utilized as a natural fuel. The concentration of fuel was varied to investigate its effect on the purity and morphology of SmMnO3 nanoparticles. The physiochemical properties of the synthesized nanoparticles, including crystal structures, morphology, optical, and magnetic properties, were investigated using X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Fourier-Transform Infrared Spectroscopy (FTIR), Vibrating Sample Magnetometer (VSM), Diffuse Reflectance Spectroscopy (DRS), X-ray fluorescence (XRF) and Brunauer-Emmett-Teller (BET). The band gap of the as-synthesized nanoparticles was determined to be 1.8 eV, indicating their potential as a photocatalyst. The photocatalytic activity of SmMnO3 nanoparticles was evaluated against Methyl violet and Erythrosine, and the mechanism of photocatalyst was determined using EDTA, benzoic acid, and benzoquinone as scavengers. Photocatalytic activity was studied in both UV and visible light, and it was found that the maximum degradation (94%) was related to the degradation of Erythrosine (10 ppm) in the presence of visible light. The stability test of SmMnO3 performed and confirmed the stability of nanoparticles after 5 cycles. The results suggest that SmMnO3 nanoparticles synthesized via the green auto combustion method using pomegranate juice as a natural fuel can serve as a promising photocatalyst for the degradation of organic pollutants in the environment. Further studies can be conducted to investigate their potential in other applications.


Assuntos
Poluentes Ambientais , Nanopartículas , Poluentes da Água , Samário , Eritrosina , Luz , Água , Catálise
6.
Biosensors (Basel) ; 13(8)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37622866

RESUMO

The ability to measure uric acid (UA) non-enzymatically in human blood has been demonstrated through the use of a simple and efficient electrochemical method. A phytochemical extract from radish white peel extract improved the electrocatalytic performance of nickel-cobalt bimetallic oxide (NiCo2O4) during a hydrothermal process through abundant surface holes of oxides, an alteration of morphology, an excellent crystal quality, and increased Co(III) and Ni(II) chemical states. The surface structure, morphology, crystalline quality, and chemical composition were determined using a variety of analytical techniques, including powder X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM), and X-ray photoelectron spectroscopy (XPS). The electrochemical characterization by CV revealed a linear range of UA from 0.1 mM to 8 mM, with a detection limit of 0.005 mM and a limit of quantification (LOQ) of 0.008 mM. A study of the sensitivity of NiCo2O4 nanostructures modified on the surface to UA detection with amperometry has revealed a linear range from 0.1 mM to 4 mM for detection. High stability, repeatability, and selectivity were associated with the enhanced electrochemical performance of non-enzymatic UA sensing. A significant contribution to the full outperforming sensing characterization can be attributed to the tailoring of surface properties of NiCo2O4 nanostructures. EIS analysis revealed a low charge-transfer resistance of 114,970 Ohms that offered NiCo2O4 nanostructures prepared with 5 mL of radish white peel extract, confirming an enhanced performance of the presented non-enzymatic UA sensor. As well as testing the practicality of the UA sensor, blood samples from human beings were also tested for UA. Due to its high sensitivity, stability, selectivity, repeatability, and simplicity, the developed non-enzymatic UA sensor is ideal for monitoring UA for a wide range of concentrations in biological matrixes.


Assuntos
Nanoestruturas , Raphanus , Humanos , Ácido Úrico
7.
Biosensors (Basel) ; 13(4)2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37185519

RESUMO

The electrochemical performance of NiCo2O4 with urea precursors was evaluated in order to develop a non-enzymatic urea sensor. In this study, NiCo2O4 nanostructures were synthesized hydrothermally at different concentrations of urea and characterized using scanning electron microscopy and X-ray diffraction. Nanostructures of NiCo2O4 exhibit a nanorod-like morphology and a cubic phase crystal structure. Urea can be detected with high sensitivity through NiCo2O4 nanostructures driven by urea precursors under alkaline conditions. A low limit of detection of 0.05 and an analytical range of 0.1 mM to 10 mM urea are provided. The concentration of 006 mM was determined by cyclic voltammetry. Chronoamperometry was used to determine the linear range in the range of 0.1 mM to 8 mM. Several analytical parameters were assessed, including selectivity, stability, and repeatability. NiCo2O4 nanostructures can also be used to detect urea in various biological samples in a practical manner.


Assuntos
Glucose , Nanoestruturas , Animais , Glucose/química , Ureia , Leite , Óxidos/química , Níquel , Cobalto/química , Nanoestruturas/química , Técnicas Eletroquímicas
8.
Micromachines (Basel) ; 14(3)2023 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-36985084

RESUMO

To determine urea accurately in clinical samples, food samples, dairy products, and agricultural samples, a new analytical method is required, and non-enzymatic methods are preferred due to their low cost and ease of use. In this study, bitter gourd peel biomass waste is utilized to modify and structurally transform nickel oxide (NiO) nanostructures during the low-temperature aqueous chemical growth method. As a result of the high concentration of phytochemicals, the surface was highly sensitive to urea oxidation under alkaline conditions of 0.1 M NaOH. We investigated the structure and shape of NiO nanostructures using powder X-ray diffraction (XRD) and scanning electron microscopy (SEM). In spite of their flake-like morphology and excellent crystal quality, NiO nanostructures exhibited cubic phases. An investigation of the effects of bitter gourd juice demonstrated that a large volume of juice produced thin flakes measuring 100 to 200 nanometers in diameter. We are able to detect urea concentrations between 1-9 mM with a detection limit of 0.02 mM using our urea sensor. Additionally, the stability, reproducibility, repeatability, and selectivity of the sensor were examined. A variety of real samples, including milk, blood, urine, wheat flour, and curd, were used to test the non-enzymatic urea sensors. These real samples demonstrated the potential of the electrode device for measuring urea in a routine manner. It is noteworthy that bitter gourd contains phytochemicals that are capable of altering surfaces and activating catalytic reactions. In this way, new materials can be developed for a wide range of applications, including biomedicine, energy production, and environmental protection.

9.
Ultrason Sonochem ; 95: 106362, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36907102

RESUMO

Thulium vanadate (TmVO4) nanorods were successfully prepared by a simple sonochemical approach using Schiff-base ligands. Additionally, TmVO4 nanorods were employed as a photocatalyst. The most optimal crystal structure and morphology of TmVO4 have been determined and optimized by varying Schiff-base ligands, the molar ratio of H2Salen, the sonication time and power, and the calcination time. A Eriochrome Black T (EBT) analysis revealed that the specific surface area was 24.91 m2/g. A bandgap of 2.3 eV was determined by diffuse reflectance spectroscopy (DRS) spectroscopy, which makes this compound suitable for visible photocatalytic applications. In order to assess the photocatalytic performance under visible light, two anionic dyes (EBT) and cationic dyes (Methyl Violet (MV)) were used as models. A variety of factors have been studied in order to improve the efficiency of the photocatalytic reaction, including dye type, pH, dye concentration, and catalyst loading. Under visible light, the highest efficiency was achieved (97.7%) when 45 mg TmVO4 nanocatalysts were present in 10 ppm Eriochorome Black T at pH = 10.

10.
Molecules ; 28(6)2023 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-36985746

RESUMO

To cope with environmental pollution caused by toxic emissions into water streams, high-performance photocatalysts based on ZnO semiconductor materials are urgently needed. In this study, ZnO nanostructures are synthesized using leafy spinach extract using a biogenic approach. By using phytochemicals contained in spinach, ZnO nanorods are transformed into large clusters assembled with nanosheets with visible porous structures. Through X-ray diffraction, it has been demonstrated that leafy spinach extract prepared with ZnO is hexagonal in structure. Surface properties of ZnO were altered by using 10 mL, 20 mL, 30 mL, and 40 mL quantities of leafy spinach extract. The size of ZnO crystallites is typically 14 nanometers. In the presence of sunlight, ZnO nanostructures mineralized methylene blue. Studies investigated photocatalyst doses, dye concentrations, pH effects on dye solutions, and scavengers. The ZnO nanostructures prepared with 40 mL of leafy spinach extract outperformed the degradation efficiency of 99.9% for the MB since hydroxyl radicals were primarily responsible for degradation. During degradation, first-order kinetics were observed. Leafy spinach extract could be used to develop novel photocatalysts for the production of solar hydrogen and environmental hydrogen.


Assuntos
Luz Solar , Óxido de Zinco , Fotólise , Óxido de Zinco/química , Azul de Metileno/química , Spinacia oleracea , Iluminação
11.
Molecules ; 28(6)2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36985808

RESUMO

Antibiotic water contamination is a growing environmental problem in the present day. As a result, water treatment is required for its reduction and elimination. Due to their important role in resolving this issue, photocatalysts have drawn a great deal of interest over the past few decades. When non-biodegradable organic matter is present in polluted water, the photo catalytic process, which is both environmentally friendly and an improved oxidation method, can be an effective means of remediation. In this regard, we report the successful synthesis of pure phased rare earth doped ZnO nanoparticles for tetracycline degradation. The prepared catalysts were systematically characterized for structural, optical, and magnetic properties. The optical band gap was tailored by rare earth doping, with redshift for Sm and Dy doped nanoparticles and blueshift for Nd doped ZnO nanoparticles. The analysis of photoluminescence spectra revealed information about the defect chemistry of all synthesised nanoparticles. Magnetic studies revealed that all synthesized diluted magnetic semiconductors exhibit room temperature ferromagnetism and can be employed for spintronic applications. Moreover, Dy doped ZnO nanoparticles were found to exhibit a maximum degradation efficiency of 74.19% for tetracycline (TCN) removal. The synthesized catalysts were also employed for the degradation of Malachite green (MG), and Crystal violet (CV) dyes. The maximum degradation efficiency achieved was 97.18% for MG and 98% for CV for Dy doped ZnO nanoparticles. The degradation mechanism involved has been discussed in view of the reactive species determined from scavenging experiments.

12.
Entropy (Basel) ; 25(3)2023 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-36981340

RESUMO

We present an analysis of the pseudorapidity η and transverse momentum pT distributions of charged hadrons in pp collisions for the kinematic range of 01 GeV/c at 0.9 and 2.36 TeV within the experimental errors, while Dire overshoots and Vicia undershoots the data by 50% each. At 7 TeV, the Dire module presents a good prediction, whereas the Simple and Vincia modules underestimate the data within 30% and 50%. Comparing the Simple module of the Pythia model and the predictions of the CRMC models with the experimental data shows that at 0.9 TeV, EPOS-LHC has better results than the others. At 2.36 GeV, the cosmic rays Monte Carlo (CRMC) models have better prediction than the Simple module of Pythia at low pT, while QGSJETII-04 predicts well at high pT. QGSJETII-04 and EPOS-LHC have closer results than the Pythia-Simple and Sibyll2.3d at 7 TeV. In the case of the pseudorapidity distributions, only the Pythia-Simple reproduced the experimental measurements at all energies. The Dire module overestimates, while Vincia underestimates the data in decreasing order of discrepancy (20%, 12%, 5%) with energy. All CRMC models underestimate the data over the entire η range at all energies by 20%. The angular ordering of partons and the parton fragmentation could be possible reasons for this deviation. Furthermore, we used the two-component standard distribution to fit the pT spectra to the experimental data and extracted the effective temperature (Teff) and the multiplicity parameter (N0). It is observed that Teff increases with the increase in the center of mass energy. The fit yielded 0.20368±0.01, 0.22348±0.011, and 0.24128±0.012 GeV for 0.9, 2.36, and 7 TeV, respectively. This shows that the system at higher energies freezes out earlier than lower ones because they quickly attain the equilibrium state.

13.
RSC Adv ; 13(1): 743-755, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36683771

RESUMO

In this study, we have prepared cobalt selenide (CoSe2) due to its useful aspects from a catalysis point of view such as abundant active sites from Se edges, and significant stability in alkaline conditions. CoSe2, however, has yet to prove its functionality, so we doped palladium oxide (PdO) onto CoSe2 nanostructures using ultraviolet (UV) light, resulting in an efficient and stable water oxidation composite. The crystal arrays, morphology, and chemical composition of the surface were studied using a variety of characterization techniques, including X-ray diffraction (XRD), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared (FTIR) spectroscopy. It was also demonstrated that the composite systems were heterogeneous in their morphology, undergoing a shift in their diffraction patterns, suffering from a variety of metal oxidation states and surface defects. The water oxidation was verified by a low overpotential of 260 mV at a current density of 20 mA cm-2 with a Tafel Slope value of 57 mV dec-1. The presence of multi metal oxidation states, rich surface edges of Se and favorable charge transport played a leading role towards water oxidation with a low energy demand. Furthermore, 48 h of durability is associated with the composite system. With the use of PdO and CoSe2, new, low efficiency, simple electrocatalysts for water catalysis have been developed, enabling the development of practical energy conversion and storage systems. This is an excellent alternative approach for fostering growth in the field.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...